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UK 
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Abstract. In this paper we calculate the magnetic interactions between f elect” 
in the heavy fermion compounds using the slave boson approach to the periodic 
Andersonmodel. Werhow that at high temperatures werecover theitXKY interaction 
between local moments which may produce a magnetic tramition with TN > T’. At 
low temperatures thereisanadditionalpart to theinteraction whichactsbetveen the 
quasi-particks and allows magnetic transitions from within the heavy Fermi liquid 
state. The magnetic momcnt in the sDW state can be calculated and the possibility 
o f d  magnetic moments is discussed. 

1. Introduction 

The f electron metals exhibit a variety of ground states. In conventional systems, the 
RKKY interaction causes the local f moments to order below a critical temperature, 
TN. It is well known, however, that in several of the Ce and U compounds the local 
moments are gradually compensated or ‘screened’ out leading to the formation of an 
enhanced mass Fermi liquid (see Coqblin et a l  (1990) for a list of magnetic and non- 
magnetic Ce compounds). These are the so-called ‘mixed valent’ or ‘heavy fermion’ 
compounds, which are characterized by a small energy scale, T*. This heavy Fermi 
liquid may itself subsequently undergo a transition to a magnetic, superconducting 
or, in an applied magnetic field, metamagnetic state (see for example Taillefer et a1 
(1990) for a review). With regard to the magnetic instabilities, it appears that we 
need to distinguish between two types of transition. A number of compounds including 
UPt, and URu,Si,, exhibit very weak magnetic transitions with TN well below T’, 
extremely small magnetic moments - 0.01 pB, which are correlated only over finite 
lengths and which in some cases may be characterized by incommensurate wavevectors. 
The magnetism is itinerant, arising out of the heavy quasi-particles rather than the 
local f moments. In UPt,, however, we can replace 5% of the Pt by Pd or of the U by 
Th and obtain a robust antiferromagnetic state with a similar transition temperature 
to the pure compound but with long-range order and moments - 30 times larger 
(Franse et ~l 1990). The difference in the ratio of the magnetic moment to TN strongly 
suggests two different types of magnetic interaction. A similar effect is observed in 
other doped compounds such as Ce(Cul-,Ni,)zGez (Sparn et al 1990). The pure 
compounds UCd,, and U,Zn,, also have a transition to an antiferromagnetic state 
with long range order and with reduced, but still reasonably large, magnetic moments 
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- 0.5-1.0 p g .  In these cases the transitions are more reminiscent of local moment 
magnetism. Nonetheless, the magnetic state is unusual and, for example, there remains 
a large linear coefficient of specific heat as T goes to zero j u s t  as in the non-magnetic 
heavy fermion compounds (Broholm el 41 1987). There appear to be three possible 
regions: (i) local moment magnetism, (ii) itinerant magnetism arising out of the heavy 
quasi-particles, and (iii) an intermediate region where both local and itinerant aspects 
are important. 

Theoretically we expect the properties to be determined by the interplay of mag- 
netic interactions and moment-compensating mechanisms. We define a quantity TNo, 
the magnetic transition temperature in the absence of any moment-compensating 
mechanism and ?’;, the characteristic temperature of the Fermi liquid state in the 
absence of magnetic interactions. Then in general we might expect that for TNo > T,’ 
we obtain a magnetic ground state before the moment-compensating mechanism sets 
in, while for T,’ > TNo the magnetic moments are compensated before the magnetic 
correlations become effective. The ground state, in this case, will be an enhanced mass 
Fermi liquid. Attempts to find a criterion to distinguish between these two regimes 
have been qualitatively successful (Doniach 1977, Jullien el al 1977 and Coleman 
1983). This does not, however, account for the itinerant magnetism observed with 
very small magnetic moments. 

In this paper we investigate the problem of Fermi liquid versus magnetic ground- 
state by using the slave boson approach to the periodic Anderson model (see for 
example Millis and Lee (1987) and Rasul and Desgranges (1986)). The mean-field ap- 
proximation gives renormalized bands describing non-interacting quasi-particles with 
large effective masses. Fluctuations in the boson fields produce an interaction which 
couples to the hybridization and this will mediate the magnetic interaction via the con- 
duction electrons. For this we need to look at processes in which at least two bosons 
are exchanged. A class of higher-order terms can then be defined and a ladder-type 
summation performed giving an RPA-type susceptibility. We consider the behaviour 
of the interaction in the high- and low-temperature limits. At high temperatures only 
the high-energy part of the boson propagator contributes. This describes the RKKY 
interaction between local f electrons. At T = 0, on the other hand, there is an impor- 
tant additional contribution from the low-energy part of the boson propagator. This 
interaction arises only between quasi-particles in the Fermi liquid regime. The full 
interaction, then, develops a temperature dependence around T’. A similar approach 
has been considered by Doniach (1987) although he neglected the low-energy part. 
The form of the susceptibility has some similarities with that found from other ap- 
proaches (Grewe and Welslau 1988, Grewe 1988, Kuramoto 1989 and Kuramoto and 
Miyake 1990). 

W e  can now consider the conditions for a magnetic instability. We look first at 
the high-energy part of the interaction and calculate the critical ‘Kondo coupling’, J c ,  
as a function of the crystal field splitting, A, using the ‘spin N ’  model, where N is 
the degeneracy of the f level. Looking first at q = 0, the results agree qualitatively 
with previous approaches, the major difference being that our model can be used to 
describe a spin density wave (SDW) instability. Next we consider ways of making our 
model more realistic and include the effects of: 

(i) spin-orbit coupling. This has a significant effect on the value of J,. As a 
function of N we now have N J ,  = constant, in contrast to previous results, and the 
dependence of J ,  on A is expected to be smaller. 
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(ii) q # 0. Experimentally, the transitions are to an antiferromagnetic or in- 
commensurate state and we consider the factors determining which transition in fact 
occurs. We show that this depends strongly on details of the band structure and band 
filling. We find large inter-band terms when q = Q, the ‘nesting vector’ which will 
give rise to a SDW gap opening between the two hybridized bands. This is in contrast 
to the SDW found by Doniach (1987) where the use of the spin N model lead to nearly 
half-filled hands with the gap opening in the middle of the bands. 

We discuss qualitatively the effect that the low-energy part of the interaction will 
have on this picture. Here there is no simple dependence of the interaction on the 
bare parameters, though it will depend on the band structure and band filling. We 
show that at q = 0 this term alone is of the correct order of magnitude to produce a 
transition. Using simple quasi-ld bands we can investigate the pdependence of the 
low energy terms and the possibility of an incommensurate value of q is suggested. 

The magnetic transition temperature, T,, due to the high-energy terms is then 
calculated as a function of J .  Below a certain temperature, T,, - T’, the magnetic 
susceptibility becomes temperature-independent and there are no transitions with T, 
less than T,,. It is this temperature range, however, where the low-energy part of the 
interaction begins to play arole and we discuss the possibility that it is the temperature 
dependence of this which may drive the magnetic transitions from the quasi-particle 
regime. 

Finally we consider the gap equation for the SDW arising from the high-energy 
terms. In a recent paper it was  suggested that there was no non-trivial solution for 
this (Harigaya 1990). This is not what we find here and we discuss the reasons for the 
discrepancy. The magnetic moment, S, is calculated as a function of J, and it is seen 
that this is reduced for TN - T’. For transitions produced by the low-energy part 
of the interaction S is further reduced although we only obtain very small values for 
TN < T’. Special features of the band structure such as nesting may further reduce 
S in certain cases. 

2. RPA form for the magnetic susceptibility 

Using the slave boson approach, the periodic Anderson model with U - M can be 
reformulated to give an effective Hamiltonian (Millis and Lee 1987 and Rasul and 
Desgranges 1986) 

ff = + xEo , f / ’ , f i ,  + V , , ( k ) f , ! , b i ~ b ~ e x p ( R i l e )  + h.c. (2.1) 

subject to the constraint nri + nbi = 1, where 6; is the ‘slave boson’ field which ensures 
that nfi < 1. We note that strictly speaking this is only valid for the Ce compounds 
although we do not expect the reults for U to differ greatly (Evans and Gehring 
1989). A convenient way of dealing with this is to write the path integral form for the 
partition function 2, where the constraint is taken care of by introducing a Lagrange 
multiplier iX.  

ak  im k o i m  
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where 

We write the boson field in terms of its phase and amplitiude, bi = pi exp(i0;) and 
make the gauge transformation, fim -t fim exp(i0,). The phase velocity, .$ = aOi/8r, 
then couples to the Lagrange multiplier giving, iX -* iX + ibi(r). iX(7) now depends 
on imaginary time, 7,  and acts as a boson field. The 'spin N' approximation in 
which ckq 4 ckm and V,,(k) -+ V is frequently made to simpliy the calculation. 
The simplest approximation we can make is the 'mean-field' approximation where we 
replace pi(.) and iX,(r) by their average values. This gives us an effective hybridma- 
tion Hamiltonian with renormalized parameters, I.' -+ = ~pV = (1 - nr)1/2V and 
Eo -+ et = iX + Eo. zf acts as the characteristic energy scale in the system and can 
be identified with T'. The problem reduces to one of non-interacting quasi-particles 
where the renormalized parameters are found by minimizing the free-energy and solv- 
ing the mean-field equations. The quasi-particles have an enhanced m m  given by 
m*/m = v*/c: - l / r ,  which is large in the limit of Eo being large and negative. 

We can now calculate the f electron susceptibility in the mth channel for a field 
along the L axis to be 

(2.4) 

where we have not included the magnetic moment. k is used to denote the four vector 
( k , w ) .  Gfm(k) is the f electron Green function given by 

where E*(k)  are the quasi-particle bands 

and A,(k) are the f electron weights in the bands 

We can now go beyond the mean-field theory and include fluctuations in the bc- 
son fields. There are two types of fluctuation corresponding to fluctuations in the 
amplitude and phase of the boson field. In k space we have p(k )  = p + 6p(k) and 
A(k) = A +6A(k). The fluctuations to 1st order have been considered by several people 
and have been used to calculate the correction to the Wilson ratio, the T 2  term in 
the resistivity (Millis and Lee 1987), and the superconducting interaction in different 
angular momentum channels (Lavagna et al 1987). In all these calculations it is the 
fluctuations in the phase of the boson field, associated with enforcing the constraint 
at each site, which gives the dominant contribution. 
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f c f 

Figure 1. The first of the ladder diagramp contributing to xfm(q). 

To this order then, fluctuations in the amplitude of the boson fields are relatively 
unimportant. It is these fluctuations, however, which we expect to mediate the inter- 
site magnetic interactions via the hybridization with the conduction electrons. Such 
interactions will only be generated by double exchange of bosons and we calculate now 
the contribution these terms make to the magnetic susceptibility. 

Consider first the contribution from the diagram shown in figure 1. This gives 

xfma(q) =v4 Gfm( k)Gf,(k + q)D,,(k - k")G-(k")G,,(~"+ 9) 
k,k',k" 

x Dpp(k" - k')Gfm(k')Gfm(k' + 9 )  (2.8) 

where G,,(k) is the mean-field Green function for c electrons, = Co=*A,[w - 
E,(k) ] - l ,  and Dp,(k) is the boson propagator for fluctuations in the amplitude of 
the boson field. 

We assume that the wavevector dependence of the boson propagators is much 
smaller than the energy dependence. This is the 'local' approximation which is fre- 
quently used. We start by considering the sum over k. We have 

F(q,w") = CGrm(k)Grm(k  + q)Dp,(w -4 
k 

Performing the sum over w then gives 

From now on we consider v = 0. Taking the Fermi level to lie in the lower band the 
sum over C can be performed to give, at q = 0 and T = 0, 

F(0,w") = ~~ , (0 )D~ , ( -w" ) .  (2.11) 
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Since most of the f electron weight is close to the Fermi level we expect a similar 
factorization to hold for q # 0 and finite temperatures giving 

F(q,w'') C Xfm(q)Dpp(-u") (2.12) 

quite generally. The full expression (2.8) therefore factorizes to give 

= x;m,(q)m. (2.13) 

We can now write down a whole series of diagram and perform a ladder summation 
giving an RPA type susceptibility 

(2.14) 

We now discuss the behaviour of I ( q ) .  We consider first the high-temperature limit. 
There is a problem here as the mean-field solution breaks down at a temperature 
T,. We can in fact push T, to being > T' by including the T dependence of the 
Fermi level and thus avoid the problem (Evans e l  a i  1989). Alternatively we can 
follow the procedure used by Coleman (1987) and fix the mean-field parameters just 
below T, and then continue to allow the temperature to increase. In either case at 
sufficiently high temperatures only the high-energy part of the boson propagator will 
contribute. D,,(w) is found from functional integral techniques and it is easily shown 
that (Houghton et ai 1988) 

(2.15) D,,(w) = l/iX % -I/& 

for all temperatures giving I ( q )  = x,V'/E;. 
At T = 0 the situation is more complicated. Most of the c electron weight lies 

relatively far from the Fermi level and c electrons near the Fermi surface have a 
weight - m/m*. This may lead us to expect that the low-energy contribution to the 
interaction is small. However, at T = 0 we find ( R a d  and Desgranges 1986) 

DP,(O) = l/(2NV2P,) (2.16) 

where po is the conduction electron density of states, assumed constant. We see that 
Dp,(0) > D,, (w)  and despite the small weight of the low-energy c electrons, the 
low-energy part of the interaction cannot be neglected. To keep the calculation simple 
we split the sum over w up into two parts, IAJI < we and IwI > wc, where wc - q. 
We assume that for IwI < wc we can replace Dpp(w)  by its value at w = 0 while for 
IwI > w, we can replace the boson propagator by its value in the high-energy limit. 
We obtain 

I ( q )  = V4 [X!k(q)~po(w)D,o( -~)  + ~ L n ( q ) D p p ( o ) D p p ( o ) ]  (2.17) 

where 

x:,(P, 0) = G,,(kw)G,(k + q , 4  (2.18) 
.k,lwl<w. 
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and 

(2.19) 

It is easily shown that &O, 0) = po while xk(0,O) .-, pom/m*. Since the high-energy 
contribution to  x, is so much bigger than the low-energy contribution it is insensitive 
to the value of U,. The low-energy part, however, has a spurious dependence on wc. 

The interaction has naturally split into two terms, one coming from the high- 
energy part and the other from the low-energy part of the boson propagator. Using 
(2.15) and (2.16) gives at T = 0 

(2.20) 

We note that there are many other contributions to this order including those 
with single boson exchange, interactions with the other boson propagators, and terms 
involving off-diagonal susceptibilities, xk. All of these have been considered and in 
the limits nr - 1 and poJ g 1 are negligible compared to (2.20). 

The high-energy part of I ( q )  can be written Ih(q) e poJ2 where J = V2/Eo .  This 
is the only part of the interaction which survives to high temperature. The same term 
could in fact have been found by adding a term JS,. s, to the mean-field Hamiltonian 
and using the molecular field approximation. It describes coupling between nearly 
unrenormalized f electrons. As the temperature is reduced, the low-energy part of the 
interaction begins to play a role and the total interaction will increase. 

Several papers have considered this problem from a different starting point (Grewe 
and Welslau 1988, Grewe 1988, Kuramoto 1989 and Kuramoto and Miyake 1990). 
They begin with a collection of single sites, then consider interactions between them 
mediated by the conduction electrons in an extension of either the non-crossing ap- 
proximation or Fermi liquid theory. The full susceptibility so calculated has the form 

xr(q,w) = rx:(W,-l-  K(q,w)l-'. (2.21) 

K(q,w)  splits into two terms representing the high- and low-energy contributions as 
above. The high-energy term is of the form Kh N xBJ2 and the low-energy term 
K' - xB, where xB is the band contribution to the susceptibility which appears to be 
similar to  our x,. The differences with our approach are as follow: 

(i) The zeroth order f electron susceptibility, x:, is calculated for the impurity so 
does not depend on q. 

(ii) K h  and I<' are each proportional to the full 'band' susceptibility, xB, and not 
just a part of it as in our calculation. 

(iii) In the results presented by Grewe(1988) he finds that for T = 0 xB - pom/m* 
which corresponds to our result for xi. The low-energy contribution to the interaction 
is therefore comparable to ours while the high-energy contribution is a factor m/m* 
smaller. 

At T > T', however, he obtains xB Y po and the high-energy term is now similar to 
ours, the low-energy terms having gone to zero in both models. 

Despite these discrepancies it is 
nonetheless interesting that such different approaches produce a final result with much 
in common. 

The numerical prefactors are also different. 
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3. The condition for a magnetic instability 

3.1. q = 0 

We consider here the condition for a magnetic instability by looking for zeros of the 
denominator of (2.14). We start by considering the case q = 0, which would lead 
to a ferromagnetic instability, and then consider under what conditions xr(q)xc(q) > 
xf(0)x,(O) giving an antiferromagnetic or incommensurate ground state. 

We look for instabilities driven by the high-energy part of the interaction and 
consider the equation 

1 - J2~rm(0)~E,,,(O). (3.1) 

We have xrm - l/eI and xt,, - po and (3.1) is similar to the condition arrived 
at from qualitative approaches where the ground state energies of a Kondo singlet 
and magnetically-ordered states are compared (Doniach 1977, Jullien et a[ 1977 and 
Coleman 1983). 

We consider the 1/N model described in section 2 with N = 6 but with a crystal 
field splitting the originally degenerate f level into three doublets separated by en- 
ergies A, and A2 (Evans 1990). The magnetic instability will occur in the channel 
corresponding to the ground state doublet with energy Em. We have xm = poVa/$, 
and x," = p,,. The mean-field equations yield 

E~ = 2p0v2  In (-) w3 
fm'rifn (3 .2)  

where en = c, + A, and en = Em + A2. cm is now given in terms of J and A, and 
A2 and for given crystal fields we can calculate the critical value of J ,  JC, for which 
(3.1) is satisfied at T = 0. For J > J,  we obtain a Kondo liquid while for J < J ,  
the ground state is magnetic. Putting A2 = ZA, it is found that J ,  increases at first 
rapidly with A, then begins to level off as seen in figure 2. We note that Alpo = 0.06 
gives A,/T* = 12 which is fairly typical for the heavy fermion compounds. Increasing 
A, reflects a decrease in the effective degeneracy so this behaviour is as expected 
from previous approaches. We show below, however, that with more realistic bands 
the behaviour is modified. We can also calculate the critical value of T'. Defining 
1/T* = y where y is the linear coefficient of the specific heat we can calculate T f .  
This decreases with A, as found by Doniacb (1987). 

We consider now what happens when spin-orbit coupled bands are used (Zou 
and Anderson 1987). The conduction electrons now have their true spin U and 
the hybridization matrix element depends on spin and wave vector, V,,(k) = 
VoY3,-,(k)(31m-a, fu I im),  where Y3,,,-Jk) is the spherical harmonic for I = 3 and 
(31m - U, +U I i m )  = (4r)'I2[(7 - 4~m)/14]'/~ is the Clebsch-Gordan coefficient for 
spin-orbit coupled states with j = 5 and 1 = 3. The simplest case is for A, = At = 0 
where it is easily seen that only two linear combinations of the f levels hybridize, the 
rest remaining localized at q. The physical picture is, therefore, significantly different 
to that calculated within the 'spin N' model. The hybridization term is rewritten 

(3.3) 
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Po& 

Figure 2. Critical value of poJc versus poA.1 whem A2 = 2A1. The crosp indicates 
the A t  when spin-orbit coupled bands are used with A1 = A1 = 0. 

where we have defined 

We note that the hybridization is in this case isotropic and the large anisotropy consid- 
ered by Doniach (1987) is not appropriate. Since only those f electrons which hybridize 
can take part in the RKKY interaction the susceptibility has a different form to (2.14) 
and we have for the full susceptibility, now including the magnetic moment, 

where pp is the magnetic moment for the quasi-particle bands which is only a fraction 
of the full moment, p,, with p; = 0.18p.$ We obtain an effective model with N = 2 
and the criteria for instability is 

which is very different to that calculated above. Solving this we find a value for J,  
which is approximately 2 times larger. When we vary N we find N J ,  = constant, 
in contrast to the 'spin N' model where NJ,  decreased with increasing N. We note 
that previous calculations have concentrated on the one- and two-site terms (Doniach 
1977, Jullien ef a2 1977 and Coleman 1983). For one or two impurities we can expand 
around the impurity sites and m is a good quantum number. For the lattice this is no 
longer valid and different results are obtained. We note that the magnetic moment in 
the magnetic state would be small, i.e. < pp. 
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For non-zero crystal field splittings the problem is harder and calculating the 
quasi-particle bands involves solving a quartic equation. If A is sufficiently large, 
however, we can approximate the lower quasi-particle band by that calculated as if 
the c electrons hybridized only with the ground state doublet. The only difference 
with the ‘spin N’ model is that V is now anisotropic (Evans 1990). We do not expect 
this to alter the results greatly and the effect of including spin-orbit coupling at large 
A will be smaller than for A = 0. The dependence of J, on A will then be smaller 
than that shown in figure 2. 

3.2. q # 0 
Experimentally the f electron compounds have antiferromagnetic fluctuations or un- 
dergo transitions to an antiferromagnetic or incommensurate state. We want now 
to consider the criteria (3.1) for p # 0. We assume a tight binding form for ck 
for a simple cubic lattice. Nesting properties will be associated with the vector 
Q = ( r / a , r / a , r / a ) .  For the high-energy part of the interaction we consider what 
happens at q = Q. This gives ‘k+4 = -ck + p where p is the centre of the c electron 
band relative to the Fermi level. For simplicity we approximate the density of states 
by a constant, p,, and consider isotropic hybridization. The results turn out to depend 
sensitively on the total number of electrons. In order to have metallic behaviour we 
need to take the total number of electrons, nT, as being < 2. This can arise if, for 
example, more than one c electron band crosses the Fermi level. For nT = 1.95 we find 
xr(Q)/xr(0) = 0.48 and x!(Q)/x,(O) = 3.8. We see that there is a tendency to anti- 
ferromagnetism rather than ferromagnetism which is due to the increase ofx,h with q. 
We emphasize that the intra-band contribution to xr(Q) is negligible compared to the 
inter-band term and the latter is so large due to the proximity of the upper and lower 
band edges. A magnetic instability will give rise to a spin density wave which will 
widen the gap between the two bands. This is very different to  the situation described 
by Doniach (1987) where he assumes IC electron and 2 /N f electrons per sub-band. 
For large N the bands are close to half-filling and in this case the biggest contribution 
to  xr(Q) comes from the intra-band terms, and the gap would open within the lower 
band. As we decrease the filling from two the antiferromagnetic terms fall off very 
quickly and for nT = 1.89 the tendency to ferromagnetism becomes larger than that 
to antiferromagnetism. There are several other factors which can influence the relative 
tendency to antiferromagnetism compared to ferromagnetism. Using the tight-binding 
density of states Kaga (1990) showed that x,(Q)/xr(0) % 2.6 implying a greater ten- 
dency to antiferromagnetism than the calculation here, although he did not calculate 
x,. Furthermore, in our model there is a gap in the quasi-particle density of states. 
This is rather artificial. We can eliminate the gap in a number of ways, for example by 
including a k-dependent hybridization (Gumhalter and Zlatic 1990) or a small amount 
of direct f-f hopping (Harrington el al 1988). This significantly increases the value of 
xr(Q)lxr(O), 

We want now to consider the low-energy part of the interaction, I‘. We note that 
the value of x:, is not very well defined as it depends on the value of we. Taking 
wc = cf we find for q = 0 and N = 2, x ID2 (0) 1/4 which is too small to drive 
the transition by itself although this term increases rapidly as we increase U,. We 
do not expect to be able to rely on the absolute value and the important feature is 
that it is of the correct order of magnitude. In this case the value of the interaction is 
not determined in a simple way by the bare parameters of the model, in contrast to 
the high-energy terms, although it will depend on the details of the band structure. 

rxc PP 
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We now want to consider what happens for finite values of q. Here the results of 
Grewe and Welslau (1988) lead us to expect that I' may peak for an incommensurate 
value of q. There are two competing factors. The gap, E+(k + q)  - E-(k), with L 
close to the Fermi level is initially large, and this tends to decrease with increasing 
q becoming - cf for q = Q. At the same time the c electron weight in the relevant 
part of the upper band, which is - 1 for q = 0, becomes smaller eventually becoming - m/m* for q = Q. This combination produces a peak at an incommensurate value of 
q. This can be checked using simple, periodic quasi-one-dimensional bands given by 
ek = -W+(2Wa/?r)k for 0 < k < ./a and ck = -W - (2Wa/s)k for -ir/a < k 6 0. 
We then have = ck + cq.  We consider the inter-band contribution to xL(q) which 
we expect to dominate. Within the approximation, xk,,, peaks for eq - 0.5W. We 
note that this value is much bigger than the one found by Grewe and WeLslau (1988). 
The maximum value of x:(q) is about a factor 4 greater than that at q = 0 and so 
appears to be about the right order of magnitude to drive the transition. We also 
need to calculate the q-dependence of xr, a feature that the theory of Grewe and 
Welslau cannot take into account. We expect xr(q) to increase monotonically with q 
(Auerbach et al 1988). Depending on the relative magnitudes of the increases in xr 
and x: we may obtain either a commensurate or an incommensurate transition. 

We can now calculate the antiferromagnetic transition temperature TN. This will 
depend on the form of Xr(q, T). We start by considering the T-dependence of xr(O, 7'). 
In general this has a small peak after which it falls off as 1/(T + 8) where 8 > 0. We 
can approximate the T dependence of xf by xfm = l/[N(T + S)] for T > T, and 
xfm = constant for T < T, where T, is the position of the peak. For the mixed- 
valent compounds T ,  - T'/2 and 8 - T'/3 (Laurence et al  1981). It is not as clear 
that these relations are obeyed in the heavy fermion compounds although we expect 
them to hold approximately (see e.g. Stewart 1984 for a review). 

With this form for xr(T), the equation for TN becomes very simple with 

2TN = J'x, - T' (3.9) 

for TN > T, and T, falling to zero when T, = T,. This is shown in figure 3 for 
T, = T'/3 assuming aground state doublet with A, = 10e, and A, = 2A,. We note 
that this part of the interaction cannot produce transitions from within the Fermi 
liquid regime. The phase diagramis essentially the same as that obtained by previous 
calculations (e.g. Coqblin et af 1990). 

The calculated temperature-dependence of xf(Q) is similar. There is no peak 
but xr(Q,T) has a plateau up to a certain temperature, TmQ, before falling off as 
1/(T + BS) ,  where BQ - TmQ - 2'6 and is the inverse of xf(Q) at T = 0. The 
phase diagram will be similar to that in figure 3. 

We can now look at the low-energy terms. We assume that it is possible to obtain 
1 < xf(q, O)x:(q, 0 ) / ( 2 N p o ) 2 .  In this case the interaction falls off with temperature. 
TN will increase with the increase of the quantity xf(q, O)xL(q, O)/(2Npo)2 above the 
critical value of 1 and we will always have TN < T'. This gives a possible explanation 
for the low-temperature itinerant magnetic phase. We note that in this case it is the T- 
dependence of the interaction I ' ( q )  rather than the T-dependence of the susceptibility 
which drives the transition. This has been predicted by fitting experimental data for 
U,Zn,, to a susceptibility of the form (2.14) (Broholm el al 1987). 

In the following section we derive the gap equation for the spin density wave state 
and calculate the magnetic moment. 



8452 S M M Evans 
- 

i 0.0001. 

0 0.02 
P o J  

0.04 0.06 

Figure 3. The msgnetic transition temperatwe, TN/W, and T*/W yereus p g J  for 
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4. The spin density wave state 

We now calculate the gap equation for the spin density waves below the magnetic 
transition. Thkprohlem has previously been considered by Aarigaya (1990) where it 
was claimed that there was no non-trivial solution. He considered, however, diagrams 
describing only single boson exchange. Corresponding terms for the susceptibility 
were found to be negligible compared to the two-boson exchange. He also neglected 
the upper band terms which we have seen give the dominant contribution to the anti- 
ferromagnetic susceptibility. Considering first the high-energy part of the interaction, 
we wish to calculate S = x,, , ,@-(k) where e&-(k)  is the anomalous propagator 
given by the Fourier transform of (T,fk,o(7)fLta -o(0)) and where calculating the 
spin for the f electrons rather than the quasi-particles should not alter the final result. 
We have treated the f electron ground state doublet as having spin U. Defining GCt 
as the Fourier transform of (~ . fk0(7 ) f~0(0 ) )  and G;,-(k) as the Fourier transform of 

relations 
(T, fc ta-~(~) f~ta-~(0) ) ,  t we use the diagrams shown in figure 4 to give the following 

( 4 4  

(4.2) 

&&‘(k) = GLt(k) + e&-(k)C;$(k)G&t(k) 
e&- ( k )  = (?Lt (k)CL-(k)GG- (k) 

where GZt and G;; are the unperturbed propagators and and e;; the per- 
turbed propagators in the presence of the spin density wave. E:;(k) is the anomalous 
self-energy which we approximate by the diagram in figure 4(c) involving double boson 
exchange. This gives 

E&-(k) = Gf2(k’)Dp,(w‘ - w”)~&-(k”)Dpp(w” - w’)G,(k’). (4.3) 
kW’  
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This factorizes in a similar way to (2.8). We consider the static-order parameter 
Z&-(k,O) and then also neglect the k dependence giving C:,-(k) = Cf. We obtain 
the following self-consistency equation 

E, = J2Cflif(Cf) (4.4) 

where 

Figure 4. The diagramatic representation of the Dyson equations (a) (4.1) and ( b )  
(4.2). Single lines represent unrenomalized electron propagators and double linea 
the renormalized propagators. (c) The gap equation for the sDW. 

In general (4.5) is relatively complicated. We can, however, make several approx- 
imations. The dominant contribution to the susceptibility comes from the inter-band 
terms with energies close to the Fermi level. We can, therefore, approximate as fol- 
lows: G:+(k) = A-(k)[w - E+(k)]-'  and G;-(k) = At(k + Q)[w - E-(k  t- Q)]-'. 
The quasi-particles are then defined by the poles of 

[ w - E + ( k ) ] [ ~  - E - ( k + Q ) I  = A - ( k ) A + ( k + Q ) C : .  (4.6) 

We can approximate the factors A, by their values at the Fermi level to give 

Iw - E+(k))lb - E- ( k  + Q11 = (4.7) 

which has solutions &(k) .  We need also to calculate nf and cf self-consistently in the 
presence of the spin density wave. These are given by 
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and 

(4.9) 

We can now calculate the spin as a function of J. We expect E,gf(Zf) to he an 
approximately universal function of C,/T;. We can then solve for ( Z , / q ) ( T $ J z )  = 
C&(E,) to give C, as a function of Jz/T4 and hence S as a function of J .  We take 
xp(Q) = po and assume crystal field splitting AI = 10 T' and A2 = 2A1, The results 
are shown in figure 5 .  We see that for the values of J for which TN z T', S is close 
to unity while as T, approaches T', S is less than unity. S gets cut off for the value 
of J corresponding to Tmp and S < 1 cannot be achieved. 

P o J  

Figure 5. The magnetic moment SIST, where ST is the maximum polarization of 
the f electron ground state doublet. in bhe SDW state at T = 0 z s  a function of POJ. 
The parameters M h6 in figure 3. 

Again we can consider what happens if the low-energy term is itself large enough 
to produce the transition. As I ' ( q )  increases above one S will increase from 0. Very 
small values for S will only he found when Ixr is very close to 1 which will correspond 
to TN < 7''. The result will, however, depend on the band structure. In the case of 
UPt, it has been suggested that nesting of the Fermi surface results in much smaller 
moments than expected (Miyake and Kuramoto 1990). 

5. Conclusion 

In this paper we have considered how fluctuations in the slave boson field give rise 
to magnetic interactions between the quasi-particles derived from the mean-field the- 
ory. An RPA form for the susceptibility is found. The interaction, I ( q ) ,  separates 
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naturally into low- and high-energy parts. The high-energy part describes the con- 
ventional RKKY interaction between local moments at high T which may produce an 
instability for TN > T,. The same effect could be found by treating low-order per- 
turbation processes and the criteria for instability is similar to that found by classical 
approaches which describe the competition between the magnetic interaction-energy 
and the energy of the Kondo singlet. Certain differences in the details of the solution 
are, however, found when spin-orbit coupled bands are used. A self-consistent equa- 
tion for the total spin in the SDW state is derived and the total magnetic moment 
shown to be close to uninty for TN > T', then decreasing as TN approaches T'. 

The low-energy part has previously been neglected. Despite the fact that the c 
electrons mediating the interaction only have a weight - m/m* near the Fermi energy, 
the largeness of the boson propagator at w = 0 means that the low-energy contribution 
to the interaction cannot be neglected. This describes interactions between quasi- 
particles well into the Fermi liquid state and disappears at high temperatures. This 
term alone is of the right magnitude to drive the transition giving the possibility of 
magnetic instabilities arising from the Fermi liquid state with T, < T'. In this case 
it is the T-dependence of the interaction rather than the susceptibility which drives 
the transition. An incommensurate value for q appears to be possible within a simple 
model. The magnitude of S will depend on the ratio TN/T' suggesting that very small 
values of S will only be observed for TN < T', which is not the case experimentally. 
The details of the band structure will, however, also play a role and may contribute 
to reducing S in certain cases. We note that our calculations are of a model nature 
only and quantitative results are not expected. 
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